4.7 Review

Resting state functional connectivity of the ventral auditory pathway in musicians with absolute pitch

期刊

HUMAN BRAIN MAPPING
卷 38, 期 8, 页码 3899-3916

出版社

WILEY
DOI: 10.1002/hbm.23637

关键词

absolute pitch; pitch chroma perception; human auditory system; planum polare; dual auditory pathway hypothesis; functional magnetic resonance imaging; resting-state network

资金

  1. International Max-Planck Research School on Neuroscience of Communication (IMPRS NeuroCom)

向作者/读者索取更多资源

Absolute pitch (AP) is the ability to recognize pitch chroma of tonal sound without external references, providing a unique model of the human auditory system (Zatorre: Nat Neurosci 6 () 692-695). In a previous study (Kim and Knosche: Hum Brain Mapp () 3486-3501), we identified enhanced intracortical myelination in the right planum polare (PP) in musicians with AP, which could be a potential site for perceptional processing of pitch chroma information. We speculated that this area, which initiates the ventral auditory pathway, might be crucially involved in the perceptual stage of the AP process in the context of the dual pathway hypothesis that suggests the role of the ventral pathway in processing nonspatial information related to the identity of an auditory object (Rauschecker: Eur J Neurosci 41 () 579-585). To test our conjecture on the ventral pathway, we investigated resting state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) from musicians with varying degrees of AP. Should our hypothesis be correct, RSFC via the ventral pathway is expected to be stronger in musicians with AP, whereas such group effect is not predicted in the RSFC via the dorsal pathway. In the current data, we found greater RSFC between the right PP and bilateral anteroventral auditory cortices in musicians with AP. In contrast, we did not find any group difference in the RSFC of the planum temporale (PT) between musicians with and without AP. We believe that these findings support our conjecture on the critical role of the ventral pathway in AP recognition. Hum Brain Mapp 38:3899-3916, 2017. (c) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据