3.9 Article

Lead and cadmium removal by adsorption process using hydroxyapatite porous materials

期刊

WATER PRACTICE AND TECHNOLOGY
卷 15, 期 1, 页码 130-141

出版社

IWA PUBLISHING
DOI: 10.2166/wpt.2020.003

关键词

adsorption; heavy metals; porous hydroxyapatite; wastewater

向作者/读者索取更多资源

This contribution is a comparison study between synthetic hydroxyapatite (Sy-HAP) and commercial hydroxyapatite (C-HAP) for the removal of Pb2+ and Cd2+ ions present in wastewater from industrial effluents. The obtained results show that the equilibrium time required for complete adsorption of Pb2+ and Cd2+ ions on C-HAP and Sy-HAP is 15 min for both. The obtained removal efficiencies for Sy-HAP are 95.52% and 90.91% for Pb2+ and Cd2+ ions, respectively. Whereas, C-Hap presents lower removal efficiencies of 86.53% and 81.43% for Pb2+ and Cd2+ ions, respectively. Maximum adsorption was observed at pH 5; at lower pH levels adsorption was less. The experimental kinetic data fitted with the second order kinetic model. Thermodynamically, the adsorption process was endothermic and spontaneous in nature. Isotherm adsorption studies indicated that Langmuir, Freundlich and Temkin are the most valid models to describe and evaluate the adsorption process. The EDX results also confirmed the presence of lead and cadmium in adsorbents after adsorption. Finally, the HAP porous materials possess great potential for the removal of Pb2+ and Cd2+ ions from aqueous solutions and wastewater from industrial effluents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据