4.4 Article

Screening and Selection of Twenty Iranian Wheatgrass Genotypes for Tolerance to Salinity Stress during Seed Germination and Seedling Growth Stage

期刊

HORTSCIENCE
卷 52, 期 8, 页码 1125-1134

出版社

AMER SOC HORTICULTURAL SCIENCE
DOI: 10.21273/HORTSCI12103-17

关键词

antioxidant defense system; crested wheatgrass; desert wheatgrass; germination; tall wheatgrass; salinity stress; turfgrass

资金

  1. Department of Horticulture, College of Agriculture, Isfahan University of Technology

向作者/读者索取更多资源

Desert wheatgrass (Agropyron desertorum L.), tall wheatgrass (Agropyron elongatum L.), and crested wheatgrass (Agropyron cristatum L.) are native cool-season grass species that exhibit potential as a low-input turfgrass. An increased understanding of the biochemical and physiological responses of wheatgrass species and genotypes to salt stress conditions is important for developing genotypes with enhanced tolerance to salinity. The objective of this study was to characterize the physiological and antioxidative properties in 20 Iranian wheatgrass genotypes and to observe their responses to salinity stress during seed germination and seedling growth stage. A completely randomized factorial design was used with two types of factors, four levels of salinity (0, 50, 100, and 150 mM of NaCl), wheatgrass genotypes, and three replicates. In this experiment, the results demonstrated that salinity limits the germination of Iranian wheatgrass genotype seeds. The result of this study showed that among the wheatgrass genotypes, 'AD1', 'AD3,' 'AC6', and 'FA' took the shortest average time to germinate. Higher levels of final germination percentage (FGP) were observed in 'AD2', 'AD3', and 'AE5' under salinity stress than other genotypes throughout the experiment. During a prolonged period of study, 'AD1' had greater rate of germination (GR) than other genotypes. Out of the 21 genotypes, five genotypes ('AD1', 'AD2', 'AD3', 'AE5', and 'FA' genotypes) were in the range of ''salinity tolerant genotypes'' cluster. The 'AD1', 'AD2', 'AD3', 'AE5', and 'FA' genotypes generally performed better than other genotypes under salinity conditions, mainly through maintaining higher enzymatic activities such as superoxide dismutase (SOD) (EC 1.15.1.1), catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11) and peroxidase (POD) (EC 1.111.1.7), and nonenzymatic antioxidant activities by glutathione (GSH). The 'AD1', 'AD2', 'AD3', 'AE5', and 'FA' genotypes also had higher proline levels and more of total nonstructural carbohydrates (TNC) content, lower malondialdehyde (MDA) content, and lower hydrogen peroxide content (H2O2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据