4.4 Article

High-performance polymeric nanocomposites from phthalonitrile resin and silane surface-modified Ti3AlC2 MAX phase

期刊

HIGH PERFORMANCE POLYMERS
卷 30, 期 4, 页码 427-436

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954008317699678

关键词

Nanoparticles; nanocomposites; thermal properties; mechanical properties

向作者/读者索取更多资源

In this work, Ti3AlC2 M(n+ 1)AX(n) (MAX) phase ceramic nanoparticles were prepared and used as new kind of reinforcement for a typical high-performance phthalonitrile (PN) resin. The synergistic combination of both phases led to nanocomposites with improved thermal and mechanical properties. For instance, the thermal conductivity and tensile properties of the neat resin were highly enhanced upon adding more nanofiller contents. Moreover, the PN resin toughness was ameliorated by 129% at the maximum nanoparticles loading of 15 vol%. The experimental investigations were also compared with predictions from series, Halpin-Tsai, and Kerner models, and a full discussion was provided. A high-resolution transmission electron microscope confirmed the ability of the MAX phase to create a conductive network, especially at high nanofiller amounts. Scanning electron microscope (SEM) analyses of the tensile fractured surfaces revealed positive changes in the morphology, such as an increase in the roughness and amount of hackling as well as the formation of multiple microcracks. The MAX phase also enhanced the thermal stability, stiffness, and glass transition temperature of the neat resin. This work confirms the superiority of the MAX phase ceramics over the traditional ones in enhancing the properties of the PN resin and opens the way for further research in the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据