3.8 Proceedings Paper

Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising

出版社

IEEE
DOI: 10.1109/CVPR42600.2020.00371

关键词

-

资金

  1. ARC Grant Deep learning that scales
  2. National Natural Science Foundation of China [61871460, 61876152]
  3. Fundamental Research Funds for the Central Universities [3102019ghxm016]

向作者/读者索取更多资源

Recently, neural architecture search (NAS) methods have attracted much attention and outperformed manually designed architectures on a few high-level vision tasks. In this paper, we propose HiNAS (Hierarchical NAS), an effort towards employing NAS to automatically design effective neural network architectures for image denoising. HiNAS adopts gradient based search strategies and employs operations with adaptive receptive field to build an flexible hierarchical search space. During the search stage, HiNAS shares cells across different feature levels to save memory and employ an early stopping strategy to avoid the collapse issue in NAS, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient, which takes only about 4.5 hours for searching using a single GPU. We evaluate the effectiveness of our proposed HiNAS on two different datasets, namely an additive white Gaussian noise dataset BSD500, and a realistic noise dataset SIM1800. Experimental results show that the architecture found by HiNAS has fewer parameters and enjoys a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods. We also present analysis on the architectures found by NAS. HiNAS also shows good performance on experiments for image de-raining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据