4.6 Article

Effects of ozone treatment on the antioxidant capacity of postharvest strawberry

期刊

RSC ADVANCES
卷 10, 期 63, 页码 38142-38157

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra06448c

关键词

-

资金

  1. National Key Research and Development Program of China [2019YFC1606504]
  2. National Natural Science Foundation of China Youth Science Fund Project [31501547]
  3. Innovation Team of the Tianjin Forestry & Pomology Research System [ITTFPRS2018009, ITTFPRS2018010]
  4. Tianjin Innovative Experimental Project for Young Scientists [2020009]
  5. Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs [kf2019006, kf2019008]
  6. Beijing Financial Support Characteristic High Level Vocational College Construction Special Project-Food Nutrition and Safety Application Technology Collaborative Innovation Center Project [PXM2020-157102-000025]

向作者/读者索取更多资源

Strawberries are highly popular around the world because of their juicy flesh and unique taste. However, they are delicate and extremely susceptible to peroxidation of their membrane lipids during storage, which induces water loss and rotting of the fruit. This study investigated the effects of ozone treatment on the physiological traits, active oxygen metabolism, and the antioxidant properties of postharvest strawberry. The results revealed that the weight loss (WL) and respiration rate (RR) of strawberry were inhibited by ozone treatment (OT), while the decline of firmness (FIR) and total soluble solids (TSS) were delayed. Ozone also reduced the generation rate of superoxide radical anions , and the content of hydrogen peroxide (H2O2) enhanced the activity of superoxidase (SOD), catalase (CAT), ascorbate peroxidase (APX), and monodehydroascorbate reductase (MDHAR), as well as promoted the accumulation of ascorbic acid (ASA), glutathione (GSH), and ferric reducing/antioxidant power (FRAP). In addition, a total of 29 antioxidant-related proteins were changed between the OT group and control (CK) group as detected by label-free proteomics during the storage time, and the abundance associated with ASA-GSH cycle was higher in the OT group at the later stage of storage, and the qRT-PCR results were consistent with those of proteomics. The improvement of the antioxidant capacity of postharvest strawberry treated with ozone may be achieved by enhancing the activity of the antioxidant enzymes and increasing the expression of the antioxidant proteins related to the ascorbic acid-glutathione (ASA-GSH) cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据