3.8 Proceedings Paper

Feature Visualization for 3D Point Cloud Autoencoders

出版社

IEEE
DOI: 10.1109/ijcnn48605.2020.9207326

关键词

autoencoder; deep learning; feature visualization

资金

  1. European Union [766186]

向作者/读者索取更多资源

In order to reduce the dimensionality of 3D point cloud representations, autoencoder architectures generate increasingly abstract, compressed features of the input data. Visualizing these features is central to understanding the learning process, however, while successful visualization techniques exist for neural networks applied to computer vision tasks, similar methods for geometric, especially non-Euclidean, input data are currently lacking. Hence, we propose a first-of-kind method to project the features learned by point cloud autoencoders into a 3D-space augmented with color maps. Our proposal explores the properties of 1D-convolutions, used in state-of-the art point cloud autoencoder architectures to handle the input data, which leads to an intuitive interpretation of the visualized features. Furthermore, we tackle the search for relevant co-activations in the feature space by clustering the input data in the latent space, where we explore the correspondence between network features and geometric characteristics of typical shapes of the clusters. We tested our approach with experiments on a benchmark data set, and with three different configurations of a point cloud autoencoder, where we show that the features learned by the autoencoder correlate with the occupancy of the input space by the training data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据