4.0 Article

Deep soft K-means clustering with self-training for single-cell RNA sequence data

期刊

NAR GENOMICS AND BIOINFORMATICS
卷 2, 期 2, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nargab/lqaa039

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFA0502303]
  2. National Key Basic Research Project of China [2015CB910303]
  3. National Natural Science Foundation of China [31871342]

向作者/读者索取更多资源

Single-cell RNA sequencing (scRNA-seq) allows researchers to study cell heterogeneity at the cellular level. A crucial step in analyzing scRNA-seq data is to cluster cells into subpopulations to facilitate subsequent downstream analysis. However, frequent dropout events and increasing size of scRNA-seq data make clustering such high-dimensional, sparse and massive transcriptional expression profiles challenging. Although some existing deep learning-based clustering algorithms for single cells combine dimensionality reduction with clustering, they either ignore the distance and affinity constraints between similar cells or make some additional latent space assumptions like mixture Gaussian distribution, failing to learn cluster-friendly low-dimensional space. Therefore, in this paper, we combine the deep learning technique with the use of a denoising autoencoder to characterize scRNA-seq data while propose a soft self-training K-means algorithm to cluster the cell population in the learned latent space. The self-training procedure can effectively aggregate the similar cells and pursue more cluster-friendly latent space. Our method, called 'scziDesk', alternately performs data compression, data reconstruction and soft clustering iteratively, and the results exhibit excellent compatibility and robustness in both simulated and real data. Moreover, our proposed method has perfect scalability in line with cell size on large-scale datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据