4.8 Article

Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors

期刊

GREEN CHEMISTRY
卷 19, 期 17, 页码 4132-4140

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7gc01681f

关键词

-

资金

  1. National Nature Science Foundation of China [11174227]
  2. Chinese Universities Scientific Fund

向作者/读者索取更多资源

In this work, we established a one-step strategy to synthesize three-dimensional porous graphitic biomass carbon (PGBC) from bamboo char (BC), and studied its electrochemical performance as electrode materials for supercapacitors. Using potassium ferrate (K2FeO4) to fulfil the synchronous carbonization and graphitization of bamboo carbon, this method is less time-demanding, highly efficient and pollution-free, when compared with a conventional two-step strategy. The as-prepared PGBC sample possessed a porous structure with a large specific surface area (1732 m(2) g(-1)) and abundant micropores, as well as a high graphitization degree demonstrated by XRD and Raman. Further electrochemical measurements revealed that the PGBC electrode exhibited a high specific capacitance of 222.0 F g(-1) at 0.5 A g(-1), and the solid-state symmetric supercapacitor in an aqueous electrolyte (KOH/PVA) presented considerable synergetic energy-power output properties with an energy density of 6.68 W h kg(-1) at a power density of 100.2 W kg(-1), and 3.33 W h kg(-1) at 10 kW kg(-1). Moreover, the coin-type symmetric supercapacitor in an ionic liquid electrolyte (EMIM TFSI) delivered a higher energy density of 20.6 W h kg(-1) at a power density of 12 kW kg(-1). This approach holds great promise to achieve low-cost, green and industrial-grade production of renewable biomass-derived carbon materials for advanced energy storage applications in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据