4.8 Article

Catalytic transfer hydrogenolysis of ionic liquid processed biorefinery lignin to phenolic compounds

期刊

GREEN CHEMISTRY
卷 19, 期 1, 页码 215-224

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6gc02473d

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]

向作者/读者索取更多资源

Lignocellulosic biomass has the potential to play a significant role in the global bioeconomy for the production of renewable fuels and chemicals. It has been estimated that there are roughly a billion tons of lignocellulose available annually in the United States alone. Valorization of residual lignin streams generated from lignocellulosic biorefineries is key for economic viability and sustainability. In this work, catalytic transfer hydrogenolysis using isopropyl alcohol (IPA) as a hydrogen-donor solvent was employed at 300 degrees C to valorize lignin-enriched residues obtained from an ionic liquid (IL) conversion process. This process results in high liquid yields (65.5 wt%) with a significant amount of monomers present (27 wt%) and low char formation. Compositional analysis of the process streams indicates that alkyl-substituted phenols are the main products. Lignin depolymerization was enhanced at longer reaction times and in the presence of Ru/C, producing more, low molecular weight products with a greater extent of alkylation on the aromatic rings. This work suggests that residual lignin fractions from IL-based lignocellulosic conversion technologies can be depolymerized to value-added products and low molecular weight platform chemicals for the renewable fuels and chemicals sector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据