4.7 Article

Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory

期刊

GLOBAL ECOLOGY AND BIOGEOGRAPHY
卷 26, 期 11, 页码 1292-1302

出版社

WILEY
DOI: 10.1111/geb.12639

关键词

Amazonia; biomass; forest gap model; mortality rates; remote sensing; tropical forests

资金

  1. Helmholtz-Alliance Remote Sensing and Earth System Dynamics
  2. Helmholtz Impulse and Networking Fund

向作者/读者索取更多资源

Aim: Estimating the current spatial variation of biomass in the Amazon rain forest is a challenge and remains a source of substantial uncertainty in the assessment of the global carbon cycle. Precise estimates need to consider small-scale variations of forest structures resulting from local disturbances, on the one hand, and require large-scale information on the state of the forest that can be detected by remote sensing, on the other hand. In this study, we introduce a novel method that links a forest gap model and a canopy height map to derive the biomass distribution of the Amazon rain forest. Location: Amazon rain forest. Methods: An individual-based forest model was applied to estimate the variation of aboveground biomass across the Amazon rain forest. The forest model simulated individual trees; hence, it allowed the direct comparison of simulated and observed canopy heights from remote sensing. The comparison enabled the detection of disturbed forest states and the derivation of a simulation-based biomass map at 0.16 ha resolution. Results: Simulated biomass values ranged from 20 to 490 t (dry mass)/ha across 7.8 Mio km(2) of Amazon rain forest. We estimated a total aboveground biomass stock of 76 GtC, with a coefficient of variation of 45%. We found mean differences of only 15% when comparing biomass values of the map with 114 field inventories. The forest model enables the derivation of additional estimates, such as basal area and stem density. Main conclusions: Linking a canopy height map with an individual-based forest model captures the spatial variation of biomass in the Amazon rain forest at high resolution. The study demonstrates how this linkage allows for quantifying the spatial variation in forest structure caused by tree-level to regional-scale disturbances. It thus provides a basis for large-scale analyses on the heterogeneous structure of tropical forests and their carbon cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据