4.8 Article

Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100

期刊

GLOBAL CHANGE BIOLOGY
卷 23, 期 11, 页码 4854-4872

出版社

WILEY
DOI: 10.1111/gcb.13766

关键词

aerosol; forest carbon sink; nitrogen deposition; nutrient limitation; nutrient retention; phosphorus deposition; stoichiometry

资金

  1. FABIO
  2. European Commission [628735]
  3. European Research Council [ERC-2013-SyG-610028]
  4. GENCI [2016-t2014012201]

向作者/读者索取更多资源

Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (Delta C-v (dep)), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. Delta C-v (dep) for 1997-2013 was estimated to be 0.27 +/- 0.13 Pg C year(-1) from N and 0.054 +/- 0.10 Pg C year(-1) from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of Delta C-v (dep) was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. Delta C-P (dep) was exceeded by Delta C-N (dep) over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据