4.8 Article

Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration

期刊

GLOBAL CHANGE BIOLOGY
卷 23, 期 9, 页码 3908-3920

出版社

WILEY
DOI: 10.1111/gcb.13678

关键词

crop yield; elevated carbon dioxide concentration; free-air CO2 enrichment; genotypic variation; Glycine max; photosynthesis; radiation use efficiency

资金

  1. Education, Linguistic Policy, and Education Department of the Basque Country, Spain

向作者/读者索取更多资源

The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2], we need to identify and study crop cultivars that respond most favorably to elevated [CO2] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93-4118) previously reported to have similar seed yield at ambient [CO2], but contrasting responses to elevated [CO2]. Seed yield increased by 26% at elevated [CO2] (600 mu mol/mol) in the responsive cultivar Loda, but only by 11% in HS93-4118. Canopy light interception and leaf area index were greater in HS93-4118 in ambient [CO2], but increased more in response to elevated [CO2] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93-4118 at both ambient and elevated [CO2]. Daily C assimilation was greater at elevated [CO2] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93-4118, but there was no difference in the response of photosynthetic traits to elevated [CO2] in the two cultivars. Overall, this greater understanding of leaf-and canopy-level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据