4.7 Article

Declining spatial efficiency of global cropland nitrogen allocation

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 31, 期 2, 页码 245-257

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016GB005515

关键词

-

资金

  1. Harvard Center
  2. USDA Agriculture and Food Research Initiative
  3. Gordon and Betty Moore Foundation
  4. Belmont Forum/FACCE-JPI DEVIL project [NE/M02127/1]

向作者/读者索取更多资源

Efficiently allocating nitrogen (N) across space maximizes crop productivity for a given amount of N input and reduces N losses to the environment. Here we quantify changes in the global spatial efficiency of cropland N use by calculating historical trade-off frontiers relating N inputs to possible N yield assuming efficient allocation. Time series cropland N budgets from 1961 to 2009 characterize the evolution of N input-yield response functions across 12 regions and are the basis for constructing trade-off frontiers. Improvements in agronomic technology have substantially increased cropping system yield potentials and expanded N-driven crop production possibilities. However, we find that these gains are compromised by the declining spatial efficiency of N use across regions. Since the start of the Green Revolution, N inputs and yields have moved farther from the optimal frontier over time; in recent years (1994-2009), global N surplus has grown to a value that is 69% greater than what is possible with efficient Nallocation between regions. To reflect regional pollution and agricultural development goals, we construct scenarios that restrict reallocation, finding that these changes only slightly decrease potential gains in nitrogen use efficiency. Our results are inherently conservative due to the regional unit of analysis, meaning a larger potential exists than is quantified here for cross-scale policies to promote spatially efficient N use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据