4.5 Article

An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments

期刊

GEOTHERMICS
卷 65, 期 -, 页码 180-197

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.geothermics.2016.09.008

关键词

Granite; Strength; Deformation; Thermal damage; High temperature; X-ray micro CT

资金

  1. Fundamental Research Funds for the Central Universities [2015XKZD05]
  2. National Natural Science Foundation of China [51674251]

向作者/读者索取更多资源

A detailed understanding of the thermal damage and failure mechanical behavior of granite at elevated temperatures is a key concern in nuclear waste disposal engineering, underground coal gasification, and heat mining in enhanced geothermal energy. In this research, uniaxial compression tests were first carried out to evaluate the effect of high temperature treatments (200, 300, 400, 500, 600, 700 and 800 degrees C) on the crack damage, strength and deformation failure behavior of a granite. The results demonstrated that, in all cases, the crack damage threshold, the strength and static elastic modulus of granite were increased at 300 degrees C, before decreasing up to our maximum temperature of 800 degrees C. However, the static Poisson's ratio of granite first decreased at 600 degrees C, and then increased rapidly with the temperature. The crack damage and peak axial strain always showed an increase when the temperature was increased. However, the dynamic elastic modulus decreased with the temperature, whereas the dynamic Poisson's ratio did not depend on the temperature. The gradual increase of temperature results in a more ductile failure of granite. Next, the thermal damage mechanism of uncompressed granite was analyzed by optical microscopic observation. At T = 25-300 degrees C, the mechanisms were favored by the thermal expansion of mineral grains but no microcracks were observed; at T = 400-600 degrees C, the mechanisms were contributed by boundary cracks and transgranular cracks in feldspar and quartz grains; and at T = 700-800 degrees C, the mechanisms were associated with the coalescence of boundary cracks and transgranular cracks. The internal crack evolution process was then monitored during deformation using acoustic emission (AE) monitoring. The results showed that the cracking process of granite depended on the heat treatment temperature. Finally, the deformation mechanism of failed granite at various temperatures was analyzed using X-ray micro CT. During loading, the uniaxial compression stress direction dominated the more brittle fracture process of granite at T = 25-600 degrees C, which led to splitting tensile main cracks induced along the axial stress, and thermal damage determined the larger ductile fracture process of granite at T = 700-800 degrees C, which resulted in a more ductile deformation after the peak strength. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据