4.6 Article

Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment

期刊

GEOMORPHOLOGY
卷 280, 期 -, 页码 1-15

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2016.10.007

关键词

Landslide triggering; Debris flow; Runout distance; Hazard assessment

资金

  1. Competence Centre Environment and Sustainability (CCES) of ETH Domain

向作者/读者索取更多资源

Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines). (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据