3.8 Proceedings Paper

Steerable Burrowing Robot: Design, Modeling and Experiments

出版社

IEEE
DOI: 10.1109/icra40945.2020.9196648

关键词

-

向作者/读者索取更多资源

This paper investigates a burrowing robot that can maneuver and steer while being submerged in a granular medium. The robot locomotes using an internal vibro-impact mechanism and steers using a rotating bevel-tip head. We formulate and investigate a non-holonomic model for the steering mechanism and a hybrid dynamics model for the thrusting mechanism. We perform a numerical analysis of the dynamics of the robot's thrusting mechanism using a simplified, orientation and depth dependent model for the drag forces acting on the robot. We first show, in simulation, that by carefully tuning various control input parameters, the thrusting mechanism can drive the robot both forward and backward. We present several experiments designed to evaluate and verify the simulative results using a proof-of-concept robot. We show that different input amplitudes indeed affect the direction of motion, as suggested by the simulation. We further demonstrate the ability of the robot to perform a simple S-shaped trajectory. These experiments demonstrate the feasibility of the robot's design and fidelity of the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据