3.8 Proceedings Paper

Learning to Generate 6-DoF Grasp Poses with Reachability Awareness

出版社

IEEE
DOI: 10.1109/icra40945.2020.9197413

关键词

Grasping; Deep Learning in Robotics and Automation; Perception for Grasping and Manipulation

资金

  1. MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing

向作者/读者索取更多资源

Motivated by the stringent requirements of unstructured real-world where a plethora of unknown objects reside in arbitrary locations of the surface, we propose a voxel-based deep 3D Convolutional Neural Network (3D CNN) that generates feasible 6-DoF grasp poses in unrestricted workspace with reachability awareness. Unlike the majority of works that predict if a proposed grasp pose within the restricted workspace will be successful solely based on grasp pose stability, our approach further learns a reachability predictor that evaluates if the grasp pose is reachable or not from robot's own experience. To avoid the laborious real training data collection, we exploit the power of simulation to train our networks on a large-scale synthetic dataset. This work is an early attempt that simultaneously learns grasping reachability while proposing feasible grasp poses with 3D CNN. Experimental results in both simulation and real-world demonstrate that our approach outperforms several other methods and achieves 82.5% grasping success rate on unknown objects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据