3.8 Proceedings Paper

Distributed Learning Model Predictive Control for Linear Systems

期刊

出版社

IEEE

关键词

-

资金

  1. European Union [846421]
  2. Office of Naval Research
  3. Marie Curie Actions (MSCA) [846421] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

This paper presents a distributed learning model predictive control (DLMPC) scheme for distributed linear time invariant systems with coupled dynamics and state constraints. The proposed solution method is based on an online distributed optimization scheme with nearest-neighbor communication. If the control task is iterative and data from previous feasible iterations are available, local data are exploited by the subsystems in order to construct the local terminal set and terminal cost, which guarantee recursive feasibility and asymptotic stability, as well as performance improvement over iterations. In case a first feasible trajectory is difficult to obtain, or the task is non-iterative, we further propose an algorithm that efficiently explores the state-space and generates the data required for the construction of the terminal cost and terminal constraint in the MPC problem in a safe and distributed way. In contrast to other distributed MPC schemes which use structured positive invariant sets, the proposed approach involves a control invariant set as the terminal set, on which we do not impose any distributed structure. The proposed iterative scheme converges to the global optimal solution of the underlying infinite horizon optimal control problem under mild conditions. Numerical experiments demonstrate the effectiveness of the proposed DLMPC scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据