3.8 Review

Developing image analysis pipelines of whole-slide images: Pre- and post-processing

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/cts.2020.531

关键词

Image analysis; data science; analysis pipeline; deep learning; pathology; computer vision

向作者/读者索取更多资源

Deep learning is pushing the boundaries of digital pathology by going beyond simple digitization and telemedicine, potentially becoming a disruptive technology that can reduce processing time and improve anomaly detection. However, integrating deep learning into standard laboratory workflow requires more steps than just training and testing a model.
Deep learning has pushed the scope of digital pathology beyond simple digitization and telemedicine. The incorporation of these algorithms in routine workflow is on the horizon and maybe a disruptive technology, reducing processing time, and increasing detection of anomalies. While the newest computational methods enjoy much of the press, incorporating deep learning into standard laboratory workflow requires many more steps than simply training and testing a model. Image analysis using deep learning methods often requires substantial pre- and post-processing order to improve interpretation and prediction. Similar to any data processing pipeline, images must be prepared for modeling and the resultant predictions need further processing for interpretation. Examples include artifact detection, color normalization, image subsampling or tiling, removal of errant predictions, etc. Once processed, predictions are complicated by image file size - typically several gigabytes when unpacked. This forces images to be tiled, meaning that a series of subsamples from the whole-slide image (WSI) are used in modeling. Herein, we review many of these methods as they pertain to the analysis of biopsy slides and discuss the multitude of unique issues that are part of the analysis of very large images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据