4.2 Article

Generation of biallelic F0 mutants in medaka using the CRISPR/Cas9 system

期刊

GENES TO CELLS
卷 22, 期 8, 页码 756-763

出版社

WILEY
DOI: 10.1111/gtc.12511

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [16H04983, 16K14987]
  2. Grants-in-Aid for Scientific Research [16K14987, 16H04983] Funding Source: KAKEN

向作者/读者索取更多资源

Several animal models generated by genome editing methods develop somatic mosaic mutations including wild-type genome sequence in F0 generation because it is difficult to use editing tools at the one-cell stage. Producing complete knockout animals quickly is a great advantage in determining the function of target genes. This study investigated the generation of F0 knockout medaka using the CRISPR/Cas9 system. To determine whether this editing system induced mutations in the medaka genome at the one-cell stage, recombinant Cas9 protein, tracrRNA and crRNA for dead end (dnd), which is essential for germ cell development, were injected into one-cell stage embryos of olvas-DsRedExpress transgenic medaka. This allowed germ cells to be visualized by DsRed fluorescence. Genomic DNA extracted from embryos at the one-cell stage was analyzed by sequencing. Predictably, biallelic mutated sequence patterns in the target sites of dnd were found in the injected embryos. To investigate the phenotypes of the mutated fish, fluorescent and histological observations of germ cells were carried out using fry and adults. The mutations resulted in a complete loss of germ cells, suggesting loss of function of dnd in the injected embryos. Therefore, this system appears to be extremely effective for the production of F0 knockout medaka.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据