4.2 Article

Hikeshi modulates the proteotoxic stress response in human cells: Implication for the importance of the nuclear function of HSP70s

期刊

GENES TO CELLS
卷 22, 期 11, 页码 968-976

出版社

WILEY
DOI: 10.1111/gtc.12536

关键词

-

资金

  1. Japan Society for the Promotion of Science [15H05929]
  2. International Program Associate (IPA) Fellowship, an International Joint Graduate School Program of RIKEN
  3. Grants-in-Aid for Scientific Research [15H05929, 15K21744] Funding Source: KAKEN

向作者/读者索取更多资源

Hikeshi mediates the heat stress-induced nuclear import of heat-shock protein 70 (HSP70s: HSP70/HSC70). Dysfunction of Hikeshi causes some serious effects in humans; however, the cellular function of Hikeshi is largely unknown. Here, we investigated the effects of Hikeshi depletion on the survival of human cells after proteotoxic stress and found opposite effects in HeLa and hTERT-RPE1 (RPE) cells; depletion of Hikeshi reduced the survival of HeLa cells, but increased the survival of RPE cells in response to proteotoxic stress. Hikeshi depletion sustained heat-shock transcription factor 1 (HSF1) activation in HeLa cells after recovery from stress, but introduction of a nuclear localization signal-tagged HSC70 in Hikeshi-depleted HeLa cells down-regulated HSF1 activity. In RPE cells, the HSF1 was efficiently activated, but the activated HSF1 was not sustained after recovery from stress, as in HeLa cells. Additionally, we found that p53 and subsequent up-regulation of p21 were higher in the Hikeshi-depleted RPE cells than in the wild-type cells. Our results indicate that depletion of Hikeshi renders HeLa cells proteotoxic stress-sensitive through the abrogation of the nuclear function of HSP70s required for HSF1 regulation. Moreover, Hikeshi depletion up-regulates p21 in RPE cells, which could be a cause of its proteotoxic stress resistant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据