4.6 Article

Perceptual image hashing using transform domain noise resistant local binary pattern

期刊

MULTIMEDIA TOOLS AND APPLICATIONS
卷 80, 期 7, 页码 9849-9875

出版社

SPRINGER
DOI: 10.1007/s11042-020-10135-w

关键词

Discrete cosine transform; Local binary pattern; Perceptual image hashing; Robust hash; Transform domain hashing

向作者/读者索取更多资源

The proposed PIH scheme in this paper combines DCT and NRLBP to compute image hash for improved robustness against malicious distortions and the ability to detect localized tampering as small as 3% of the original image size. This scheme outperforms existing hashing schemes and exhibits resilience against non-malicious distortions.
A new Discrete Cosine Transform (DCT) domain Perceptual Image Hashing (PIH) scheme is proposed in this paper. PIH schemes are designed to extract a set of features from an image to form a compact representation that can be used for image integrity verification. A PIH scheme takes an image as the input, extracts its invariant features and constructs a fixed length output, which is called a hash value. The hash value generated by a PIH scheme is then used for image integrity verification. The basic requirement for any PIH scheme is its robustness to non-malicious distortions and discriminative ability to detect minute level of tampering. The feature extraction phase plays a major role in guaranteeing robustness and tamper detection ability of a PIH scheme. The proposed scheme fuses together the DCT and Noise Resistant Local Binary Pattern (NRLBP) to compute image hash. In this scheme, an input image is divided into non-overlapping blocks. Then, DCT of each non-overlapping block is computed to form a DCT based transformed image block. Subsequently, NRLBP is applied to calculate NRLBP histogram. Histograms of all the blocks are concatenated together to get a hash vector for a single image. It is observed that low frequency DCT coefficients inherently have quite high robustness against non-malicious distortions, hence the NRLBP features extracted from the low frequency DCT coefficients provide high robustness. Computational results exhibit that the proposed hashing scheme outperforms some of the existing hashing schemes as well as can detect localized tamper detection as small as 3% of the original image size and at the same time resilient against non-malicious distortions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据