4.0 Review

From anatomy to function and then back to anatomy: invasive assessment of myocardial ischemia in the catheterization laboratory based on anatomy-derived indices of coronary physiology

期刊

MINERVA CARDIOLOGY AND ANGIOLOGY
卷 69, 期 6, 页码 626-640

出版社

EDIZIONI MINERVA MEDICA
DOI: 10.23736/S2724-5683.20.05486-9

关键词

Myocardial ischemia; Fractional flow reserve; myocardial; Coronary angiography

资金

  1. Boston Scientific
  2. Miracor Medical SA
  3. Medtronic
  4. Abbott

向作者/读者索取更多资源

Traditional treatment methods for coronary artery disease have limitations, and new technologies such as FFR play important roles in diagnosis and treatment, but are hindered by technical drawbacks and other factors. New modalities are under development, promising to have a greater impact in clinical practice in the future.
For many decades, the severity of coronary artery disease (CAD) and the indication to proceed with either percutaneous coronary intervention (PCI) or surgical revascularization has been based on anatomically derived parameters of vessel stenosis, and typically on the percentage of lumen diameter stenosis (DS%) as determined by invasive coronary angiography (CA). However, it is currently a well-accepted concept that pre-specified thresholds of DS% have a weak correlation with the ischemic and functional potential of an epicardial coronary stenosis. In this regard, the introduction of fractional-flow reserve (FFR) has represented a paradigm-shift in the understanding, diagnosis, and treatment of CAD, but the adoption of FFR into the clinical practice remains surprisingly limited and sub-standard, probably because of the inherent drawbacks of pressure-wire-based technology such as additional costs, prolonged procedural time, invasive instrumentation of the target vessel, and use of vaso-dilatory agents causing side effects for patients. For this reason, new modalities are under development or validation to derive FFR from computational fluid dynamics (CFD) applied to a three-dimensional model (3D) of the target vessel obtained from CA, intravascular imaging, or coronary computed tomography angiography. The purpose of this review was to describe the technical details of these anatomy-derived indices of coronary physiology with a special focus on summarizing their workflow, available evidence, and future perspectives about their application in the clinical practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据