4.5 Article

Fused and Modified Evolutionary Optimization of Multiple Intelligent Systems Using ANN, SVM Approaches

期刊

CMC-COMPUTERS MATERIALS & CONTINUA
卷 66, 期 2, 页码 1479-1496

出版社

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2020.013329

关键词

Fusion; machine learning; plant leaves diseases; feature selection; fused modified grasshopper algorithm

向作者/读者索取更多资源

A novel approach based on grasshopper optimization algorithm and feature selection has been proposed for diagnosing plant leaf diseases. The algorithm can detect diseases at an early stage, thereby increasing crop survival and protection.
The Fused Modified Grasshopper Optimization Algorithm has been proposed, which selects the most specific feature sets from images of the disease of plant leaves. The Proposed algorithm ensures the detection of diseases during the early stages of the diagnosis of leaf disease by farmers and, finally, the crop needed to be controlled by farmers to ensure the survival and protection of plants. In this study, a novel approach has been suggested based on the standard optimization algorithm for grasshopper and the selection of features. Leaf conditions in plants are a major factor in reducing crop yield and quality. Any delay or errors in the diagnosis of the disease can lead to delays in the management of plant disease spreading and damage and related material losses. Comparative new heuristic optimization of swarm intelligence, Grasshopper Optimization Algorithm was inspired by grasshopper movements for their feeding strategy. It simulates the attitude and social interaction of grasshopper swarm in terms of gravity and wind advection. In the decision on features extracted by an accelerated feature selection algorithm, popular approaches such as ANN and SVM classifiers had been used. For the evaluation of the proposed model, different data sets of plant leaves were used. The proposed model was successful in the diagnosis of the diseases of leaves the plant with an accuracy of 99.41 percent (average). The proposed biologically inspired model was sufficiently satisfied, and the best or most desirable characteristics were established. Finally, the results of the research for these data sets were estimated by the proposed Fused Modified Grasshopper Optimization Algorithm (FMGOA). The results of that experiment were demonstrated to allow classification models to reduce input features and thus to increase the precision with the presented Modified Grasshopper Optimization Algorithm. Measurement and analysis were performed to prove the model validity through model parameters such as precision, recall, f-measure, and precision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据