3.8 Article

Strength Development of Geopolymer Composites Made from Red Mud-Fly Ash as a Subgrade Material in Road Construction

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HZ.2153-5515.0000575

关键词

Red mud; Fly ash; Geopolymer; Subgrade material; Waste management; Leaching

向作者/读者索取更多资源

The study demonstrates that using geopolymer composites for road subgrade can reduce dependency on natural resources while exhibiting good mechanical properties and microstructural characteristics, meeting permissible limits for toxic elements.
The application of industrial waste in construction reduces the dependency on natural resources. The materials, including red mud (RM) and fly ash (FA), proved to be favorable materials. However, the materials potential together as a geopolymer composite for road applications has rarely been explored. This study will examine the possibility of the replacement of natural materials in subgrade applications. To achieve this, the geopolymer compositions will be prepared by replacing RM with FA at replacement rates of 10%, 20%, and 30% by dry weight basis. The alkaline activator solution of 8 M will be prepared using sodium hydroxide (NaOH) and sodium silicate to develop geopolymer composites. The strength properties will be studied using the California Bearing Ratio (CBR) and unconfined compression strength (UCS) and validated with microstructural analysis using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The results reveal that geopolymer composites could achieve a maximum CBR value of 12% and UCS of 2,700 kPa. The microstructural analysis revealed that the formation of dense calcium aluminate hydrate (C-A-H) and calcium silicate hydrate (C-S-H) are the reason for strength improvement. The leaching studies show that the toxic elements were within the permissible limits. Overall, the test results confirmed that the geopolymer composites meet the required strength and could be used as a subgrade material in road construction. (c) 2020 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据