4.4 Article

Detection of ventricular arrhythmia using hybrid time-frequency-based features and deep neural network

期刊

出版社

SPRINGER
DOI: 10.1007/s13246-020-00964-2

关键词

SCD; Ventricular tachyarrhythmia; ECG classification; Features; Deep neural network

向作者/读者索取更多资源

The study proposed a VF/VT classification scheme using a deep neural network approach with hybrid time-frequency features, achieving higher accuracy, sensitivity, and specificity compared to standard classifiers. By utilizing ECG signal analysis, the proposed algorithm accurately detects VTA conditions, reducing misinterpretations and enhancing cardiac diagnosis efficiency.
Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time-frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据