4.6 Article

Experimental Estimation of Quantum State Properties from Classical Shadows

期刊

PRX QUANTUM
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.2.010307

关键词

-

资金

  1. Russian Foundation for Basic Research (RFBR) [19-3280043, 19-52-80034]
  2. Russian National Technological Initiative via the Moscow State University (MSU) Quantum Technology Center

向作者/读者索取更多资源

This study demonstrates the performance of property estimation based on classical shadows in a high-dimensional spatial photon state experiment. Experimental data shows that this method can outperform traditional full state reconstruction methods.
Full quantum tomography of high-dimensional quantum systems is experimentally infeasible due to the exponential scaling of the number of required measurements on the number of qubits in the system. However, several ideas have been proposed recently for predicting the limited number of features for these states, or estimating the expectation values of operators, without the need for full state reconstruction. These ideas go under the general name of shadow tomography. Here, we provide an experimental demonstration of property estimation based on classical shadows proposed in Huang et al. [Nat. Phys. 16, 1050 (2020)] and study its performance in a quantum-optical experiment with high-dimensional spatial states of photons. We show by means of experimental data how this procedure outperforms conventional state reconstruction in fidelity estimation from a limited number of measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据