4.5 Article

Modeling of Congo Red Adsorption onto Multi-walled Carbon Nanotubes Using Response Surface Methodology: Kinetic, Isotherm and Thermodynamic Studies

期刊

ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
卷 46, 期 7, 页码 6579-6592

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13369-020-05304-w

关键词

Adsorption; Congo red; MWCNTs; Response surface methodology; Thermodynamics

向作者/读者索取更多资源

This study investigated the adsorption of Congo Red dye from aqueous solutions using multi-walled carbon nanotubes as an adsorbent. Response surface methodology was employed to optimize the process, showing high removal efficiency and good agreement between experimental and model predicted responses. Kinetic studies revealed a well-defined pseudo-second-order adsorption model, while thermodynamic parameters indicated favorable adsorption process.
In this present study, an adsorption process was investigated to removal of Congo Red (CR) dye from aqueous solutions by using multi-walled carbon nanotubes (MWCNTs) as an adsorbent. The physico-chemical properties of MWCNTs were characterized by TEM, SEM, Raman spectroscopy and BET surface area. The response surface methodology, which is including central composite design, was used to investigate the effects of four independent parameters (initial pH of solution (5.5-11.5), initial CR concentration (15-75 mg/L), MWCNTs amount (0.05-0.25 g/L) and contact time (20-60 min)). ANOVA evaluated with Design Expert 10.0 showed that a high value of regression coefficient (R-2 = 0.988) a good agreement between experimental and model predicted response in addition to significance of the model. The optimum values of the independent variables giving the maximum removal efficiency (78.36%) of CR dye were obtained at the optimum adsorption conditions of initial solution pH: 5.5; initial CR concentration: 15 mg/L; MWCNTs dosage: 0.25 g/L and contact time: 59.62 min. The kinetic study illustrated that the experimental data are well defined with pseudo-second-order adsorption kinetic model. The maximum adsorption capacity (q(max)) increased from 115.8 mg/g to 138.3 mg/g with the increase in temperature from 293 to 323 K. Thermodynamic parameters, Delta H (8.56 kJ/mol), Delta G (- 27.08 and - 30.73 kJ/mol) and Delta S (0.1215 kJ/mol K) were determined for the adsorption process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据