4.8 Article

Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite-gene associations in plants

期刊

PLANT CELL
卷 33, 期 3, 页码 492-510

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/plcell/koaa046

关键词

-

资金

  1. U.S. Department of Energy, Office of Science (BER) [DE-SC0020368]
  2. U.S. Department of Energy, Office of Science (BES) [DE-FG02-07ER15905]
  3. United States Department of Agriculture National Institute of Food and Agriculture [2018-08121/1019231]
  4. U.S. Department of Energy (DOE) [DE-FG02-07ER15905, DE-SC0020368] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The study utilized stable isotope labeling, liquid chromatography-mass spectrometry, and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor in Arabidopsis. By retrospectively annotating MS features to the identified metabolome, natural genetic variants responsible for differences in metabolite accumulation were identified. The research highlighted the importance of cataloging a biochemical pathway's products through isotopic labeling across genetic variants in order to uncover metabolites and genes associated with their biosynthesis.
The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe an approach that combines stable isotope labeling, liquid chromatography- mass spectrometry (LC-MS), and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumulated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemical pathway's products through isotopic labeling across genetic variants can substantially contribute to the identification of metabolites and genes associated with their biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据