3.9 Article

Modified Salp Swarm Algorithm-Optimized Fractional-Order Adaptive Fuzzy PID Controller for Frequency Regulation of Hybrid Power System with Electric Vehicle

期刊

出版社

SPRINGER
DOI: 10.1007/s40313-020-00683-9

关键词

Hybrid power system (HPS); Load frequency control (LFC); Salp swarm algorithm (SSA); Fractional-order adaptive fuzzy PID controller with filter (FOAFPIDF); Electric vehicle (EV)

向作者/读者索取更多资源

This study proposes an intelligent load frequency controller for hybrid power system with electric vehicles and other energy storage elements, validated through numerical simulations.
A considerable no. of intermittent renewable sources such as PV generation and wind energy when integrated to the conventional grid technology causes serious issues in the power systems like frequency instability. So a more balancing controller is desired for a stable and reliable operation of the power system. Bidirectional power control of the EV aggregator is making itself a wise choice for distributed energy storage to scale down the frequency and power fluctuation. In this work, an intelligent load frequency controller using a fractional-order adaptive fuzzy PID controller with filter (FOAFPIDF) for hybrid power system with electric vehicle (EV) based on modified salp swarm algorithm (MSSA) technique is proposed. The effectiveness of MSSA technique is compared with original salp swarm algorithm as well as moth flame optimization , grey wolf optimization , particle swarm optimization and sine cosine algorithm techniques for benchmark test functions using statistical analysis. The effectiveness of the suggested load frequency control strategy by the use of electric vehicle as well as with other energy storing elements such as the superconducting magnetic energy storage component, flywheel energy storage system and ultra-capacitor along with their inherent rate constraint nonlinearity is validated by numerical simulations conducted on the studied test system. It is demonstrated that the proposed controller provides a better control action to suppress the frequency fluctuations as compared to PID controller. The robustness of the controller is also investigated against variation of system parameters and random load changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据