4.6 Article

Interpretable machine learning model for the deformation of multiwalled carbon nanotubes

期刊

PHYSICAL REVIEW B
卷 103, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.035407

关键词

-

资金

  1. NSF (CMMI MoMS) [1937983]
  2. NSF [ACI-1548562]

向作者/读者索取更多资源

An interpretable machine learning model has been proposed to accurately predict the complex rippling deformations of multiwalled carbon nanotubes. The model comprises a novel dimensionality reduction technique and deep neural network-based learning, which allows for efficient prediction and extraction of dominant deformation patterns. The model matches atomistic-physics-based models accurately and provides insights into the mechanics of one- and two-dimensional materials.
We present an interpretable machine learning model to predict accurately the complex rippling deformations of multiwalled carbon nanotubes made of millions of atoms. Atomistic-physics-based models are accurate but computationally prohibitive for such large systems. To overcome this bottleneck, we have developed a machine learning model that comprises a novel dimensionality reduction technique and a deep neural network-based learning in the reduced dimension. The proposed nonlinear dimensionality reduction technique extends the functional principal component analysis to satisfy the constraint of deformation. Its novelty lies in designing a function space that satisfies the constraint exactly, which is crucial for efficient dimensionality reduction. Owing to the dimensionality reduction and several other strategies adopted in the present paper, learning through deep neural networks is remarkably accurate. The proposed model accurately matches an atomistic-physics-based model whereas being orders of magnitude faster. It extracts universally dominant patterns of deformation in an unsupervised manner. These patterns are comprehensible and explain how the model predicts yielding interpretability. The proposed model can form a basis for an exploration of machine learning toward the mechanics of one- and two-dimensional materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据