4.8 Article

A General Strategy for Antimony-Based Alloy Nanocomposite Embedded in Swiss-Cheese-Like Nitrogen-Doped Porous Carbon for Energy Storage

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202009433

关键词

in situ self-templating; lithium-ion batteries; M-N-C coordination; pseudocapacitance contribution; Sb-based composites

资金

  1. National Natural Science Foundation of China [52002101, 21978073, 52072101]
  2. Natural Science Foundation of Zhejiang Province [LQ20E020006]
  3. China Scholarship Council

向作者/读者索取更多资源

A general in situ self-template-assisted strategy has been proposed for the design and preparation of a series of M-Sb nanocomposites, which show enhanced electronic conductivity and structural integrity, as well as abundant interfacial lithium storage. Experimental results demonstrate the excellent cycling stability and high rate performance of these composite materials.
Due to its suitable working voltage and high theoretical storage capacity, antimony is considered a promising negative electrode material for lithium-ion batteries (LIBs) and has attracted widespread attention. The volume effect during cycling, however, will cause the antimony anode to undergo a severe structural collapse and a rapid decrease in capacity. Here, a general in situ self-template-assisted strategy is proposed for the rational design and preparation of a series of M-Sb (M = Ni, Co, or Fe) nanocomposites with M-N-C coordination, which are firmly anchored on Swiss-cheese-like nitrogen-doped porous carbon as anodes for LIBs. The large interface pore network structure, the introduction of heteroatoms, and the formation of strong metal-N-C bonds effectively enhance their electronic conductivity and structural integrity, and provide abundant interfacial lithium storage. The experimental results have proved the high rate performance and excellent cycling stability of antimony-based composite materials. Electrochemical kinetics studies have demonstrated that the increase in capacity during cycling is mainly controlled by the diffusion mechanism rather than the pseudocapacitance contribution. This facile strategy can provide a new pathway for low-cost and high-yield synthesis of Sb-based composites with high performance, and is expected to be applied in other energy-related fields such as sodium-/potassium-ion batteries or electrocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据