3.8 Article

SIMULTANEOUS HIGH NUTRITIONAL SINGLE CELL OIL AND LIPASE PRODUCTION BY CANDIDA VISWANATHII

期刊

出版社

POZNAN UNIV LIFE SCIENCES
DOI: 10.17306/J.AFS.2021.0856

关键词

single cell oil; essential fatty acids; unsaturated fatty acids; Candida viswanathii; lipase

向作者/读者索取更多资源

This study evaluated the production of single cell oil and lipase by Candida viswanathii CCR8137 under nitrogen limitation using renewable carbon sources. The results showed high lipid accumulation and lipase synthesis, with nitrogen limitation cultivation being a key parameter.
Background. Omega fatty acids are a family of polyunsaturated fats associated with several health benefits. Lipases are enzymes with potential application in several food processes such as flavor and aroma, surfactants and formulations for the dairy and bakery industries. In this study, single cell oil and lipase production by Candida viswanathii CCR8137 were evaluated simultaneously from renewable carbon sources under nitrogen limitation. Materials and methods. Enzyme and single cell oil were obtained in submerged cultivations supplemented with triolein, tributyrin, corn oil, sunflower oil, canola oil and olive oil. The effects of glucose on lipid accumulation, fatty acid profile, enzyme production and cell morphology were also evaluated. Results. The highest lipid accumulation (44.5%, w/w) was obtained from triolein, whereas olive oil was the best inducer of lipase synthesis (26.8 U/mL). Nitrogen limiting cultivations were a key parameter for an organic source which showed higher lipid accumulation and enzyme production than the tested inorganic nitrogen source. Glucose was a poor inducer of lipase synthesis, though increased values of lipid accumulation were observed from this carbon source with a maximum of 63.1% (w/w). The fatty acid profile of lipids produced by C. viswanathii CCR8137 showed a high content of omega-9 fatty acid (C18:1 n-9). The addition of glucose to the culture media resulted in the synthesis of essential fatty acids: vaccenic, linolenic and eicosadienoic acids. Conclusion. Therefore, C. viswanathii CCR8137 strain can be considered as an oleaginous yeast able to accumulate high concentrations of intracellular lipids, which are potential additives for food industry applications as well as being able to simultaneously synthesize high yields of lipase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据