4.6 Article

Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 5, 页码 3029-3035

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta11503g

关键词

-

资金

  1. Australian Research Council [DP190103548, IH170100009]

向作者/读者索取更多资源

This study presents a controllable preparation of Co-based single-atom catalyst anchored on a graphitic carbon nitride support, which is successfully applied for the selective oxidation of ethylbenzene to derive acetophenone with over 95% conversion and selectivity under highly selective and environmentally friendly conditions. The oxidation of ethylbenzene into acetophenone is attributed to the oxidative radicals generated from the decomposition of PMS via electron transfer, highlighting the potential of this catalyst in the oxidation of hydrocarbons.
The development of a highly efficient strategy for the activation of the C-H bond in hydrocarbons is one of the most challenging tasks facing the chemical industries. The synthesis of novel catalysts with atomically dispersed active centers is highly desirable to achieve the maximized atom efficiency. Here we report the controllable preparation of a Co-based single-atom catalyst anchored on a graphitic carbon nitride support (SACo@g-C3N4) with 3.17 wt% Co content, which is successfully applied for the selective oxidation of ethylbenzene (EB) to derive acetophenone (AcPO) via the activated peroxymonosulfate (PMS) oxidant. The Co atoms are chemically bonded with the N atoms of g-C3N4 and present exceptional stability and reusability to resist the applied acidic-oxidative environment. Both the EB conversion and AcPO selectivity were over 95% in this highly selective SACo@g-C3N4/PMS system under mild reaction conditions. The selective conversion of EB into AcPO is attributed to the oxidative radicals generated from the decomposition of PMS molecules via the electron transfer between Co atoms and PMS. Sulfate radicals (SO4-) make a greater contribution than others to activate the C-H bond in EB oxidation. This work uncovers a facile and scalable approach for the synthesis of a robust Co-based single atom catalyst (SAC) on a g-C3N4 support and unveils its potential in the oxidation of hydrocarbons via a highly efficient and environmentally benign PMS activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据