4.6 Article

An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 1, 页码 371-379

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta05873d

关键词

-

资金

  1. University Grant Council of the University of Hong Kong [201811159147]
  2. General Research Fund [17204117, 17200518, 17201819, 17211220]
  3. Collaborative Research Fund from the Research Grants Council (RGC) [C5037-18G]
  4. Environment and Conservation Fund (ECF Project) of Hong Kong Special Administrative Region, China [64/2018]

向作者/读者索取更多资源

This study demonstrates a novel room-temperature solution-processed Li and Cu co-doped NiOx nanoparticle-based hole transport layer, which improves electrical conductivity, optical transmittance, and facilitates the formation of high-quality perovskite films. With these multiple functions, the PSCs utilizing Li and Cu co-doped NiOx HTLs achieved high efficiencies on both rigid and flexible substrates.
A multifunctional carrier transport layer favoring outstanding carrier extraction, high-quality active layer formation, and a facile low-temperature process for efficient and large-scale perovskite solar cells (PSCs) are highly desirable. While co-doping approaches have recently become a hot topic in carrier transport layers to address the negative effects and limitations of typical single doping and further boost the carrier extraction properties and thus device performances, high-temperature, high power, and multi-steps processes/treatments are required which hinder their applications and potentially damage underneath structures particularly in emerging flexible electronics. In this work, we demonstrate the first kind of room-temperature solution-processed and post-treatment-free Li and Cu codoped NiOx nanoparticle-based hole transport layer (HTL). Simultaneously, the Li and Cu codoped NiOx HTLs show the interesting and critical features of (1) improved electrical conductivity and optical transmittance, (2) a high quality (pin-hole/crack free, compact and uniform) film morphology, (3) favoring large grain-size perovskite film formation, and (4) wide-range thermal stability up to 250 degrees C. With these interesting multiple functions, PSCs with Li and Cu codoped NiOx HTLs achieve a PCE of 20.8% and 18.2% on rigid and flexible substrates, respectively. This work contributes to a promising route for realizing highly efficient and stable rigid and flexible PSCs using abundant low-cost inorganic HTLs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据