4.6 Article

Multimodularity of a GH10 Xylanase Found n the Termite Gut Metagenome

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01714-20

关键词

termite gut; lignocellulose; glycoside hydrolase; carbohydrate-binding module; xylanase; PUL; GH10; CBM4; protein domain insertion; functional genomics

资金

  1. CSC (China Scholarship Council)
  2. Climate-KIC ADMIT BIOSUCCINOVATE project

向作者/读者索取更多资源

The functional screening of a termite gut metagenomic library identified a xylan-degrading enzyme, Pm25, belonging to GH10 family. Sequence analysis revealed unique domain organization of Pm25, with upstream genes suggesting it as a Xyn10C-like enzyme. The enzyme's multimodularity and CBMs' role were further studied, showing synergistic effects of CBMs on enzymatic activity. These findings enhance understanding of Xyn10C-like proteins in gut bacteria's xylan utilization systems.
The functional screening of a Pseudacanthotermes militaris termite gut metagenomic library revealed an array of xylan-degrading enzymes, including P. milltaris 25 (Pm25), a multimodular glycoside hydrolase family 10 (GH10). Sequence analysis showed details of the unusual domain organization of this enzyme. It consists of one catalytic domain, which is intercalated by two carbohydrate binding modules (CBMs) from family 4. The genes upstream of the genes encoding Pm25 are susC-susD-unk, suggesting Pm25 is a Xyn10C-like enzyme belonging to a polysaccharide utilization locus. The majority of Xyn10C-like enzymes shared the same interrupted domain architecture and were vastly distributed in different xylan utilization loci found in gut Bacteroidetes, indicating the importance of this enzyme in glycan acquisition for gut microbiota. To understand its unusual multimodularity and the possible role of the CBMs, a detailed characterization of the full-length Pm25 and truncated variants was performed. Results revealed that the GH10 catalytic module is specific toward the hydrolysis of xylan. Ligand binding results indicate that the GH10 module and the CBMs act independently, whereas the tandem CBM4s act synergistically with each other and improve enzymatic activity when assayed on insoluble polysaccharides. In addition, we show that the UNK protein upstream of Pm25 is able to bind arabinoxylan. Altogether, these findings contribute to a better understanding of the potential role of Xyn10C-like proteins in xylan utilization systems of gut bacteria. IMPORTANCE Xylan is the major hemicellulosic polysaccharide in cereals and contributes to the recalcitrance of the plant cell wall toward degradation. Members of the Bacteroidetes, one of the main phyla in rumen and human gut microbiota, have been shown to encode polysaccharide utilization loci dedicated to the degradation of xylan. Here, we present the biochemical characterization of a xylanase encoded by a Bacteroidetes strain isolated from the termite gut metagenome. This xylanase is a multimodular enzyme, the sequence of which is interrupted by the insertion of two CBMs from family 4. Our results show that this enzyme resembles homologues that were shown to be important for xylan degradation in rumen or human diet and show that the CBM insertion in the middle of the sequence seems to be a common feature in xylan utilization systems. This study shed light on our understanding of xylan degradation and plant cell wall deconstruction, which can be applied to several applications in food, feed, and bioeconomy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据