4.5 Article

A New Multi-Agent Feature Wrapper Machine Learning Approach for Heart Disease Diagnosis

期刊

CMC-COMPUTERS MATERIALS & CONTINUA
卷 67, 期 1, 页码 51-71

出版社

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2021.012632

关键词

Heart disease; machine learning; multi-agent feature wrapper model; heart disease diagnosis; HD cleveland datasets; convolutional neural network

资金

  1. Basque Country Government

向作者/读者索取更多资源

Heart disease is a serious life-threatening condition that can be diagnosed early and efficiently using automated diagnosis systems integrating binary convolutional neural networks and multi-agent feature wrapper models. These systems improve the accuracy of HD identification by conducting a global search on HD features and adjusting classifier weights, resulting in the highest capability to identify patients with HD.
Heart disease (HD) is a serious widespread life-threatening disease. The heart of patients with HD fails to pump sufficient amounts of blood to the entire body. Diagnosing the occurrence of HD early and efficiently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment. Classical methods for diagnosing HD are sometimes unreliable and insufficient in analyzing the related symptoms. As an alternative, noninvasive medical procedures based on machine learning (ML) methods provide reliable HD diagnosis and efficient prediction of HD conditions. However, the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classification features from patients with HD. In this study, we propose an automated heart disease diagnosis (AHDD) system that integrates a binary convolutional neural network (CNN) with a new multi-agent feature wrapper (MAFW) model. The MAFW model consists of four software agents that operate a genetic algorithm (GA), a support vector machine (SVM), and Naive Bayes (NB). The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classification. A final tuning to CNN is then performed to ensure that the best set of features are included in HD identification. The CNN consists of five layers that categorize patients as healthy or with HD according to the analysis of optimized HD features. We evaluate the classification performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using a cross-validation technique and by assessing six evaluation criteria. The AHDD system achieves the highest accuracy of 90.1%, whereas the other ML and conventional CNN models attain only 72.3%-83.8% accuracy on average. Therefore, the AHDD system proposed herein has the highest capability to identify patients with HD. This system can be used by medical practitioners to diagnose HD efficiently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据