4.7 Article

Scheme for automatic differentiation of complex loss functions with applications in quantum physics

期刊

PHYSICAL REVIEW E
卷 103, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.013309

关键词

-

资金

  1. National Natural Science Foundation of China [11805279]
  2. Ministry of Education of Singapore AcRF MOE Tier-II [MOE2018-T2-2-142]

向作者/读者索取更多资源

This work demonstrates how to extend automatic differentiation to complex loss functions, and applies it in solving quantum physics problems, providing practical value in efficiently computing gradients for neural networks.
The past few years have seen a significant transfer of tools from machine learning to solve quantum physics problems. Automatic differentiation is one standard algorithm used to efficiently compute gradients of loss functions for generic neural networks. In this work we show how to extend automatic differentiation to the case of complex loss function in a way that can be readily implemented in existing frameworks and which is compatible with the common case of real loss functions. We then combine this tool with matrix product states and apply it to compute the ground state and the steady state of a close and an open quantum system. Compared to the traditional density matrix renormalization group algorithm, complex automatic differentiation allows both straightforward GPU accelerations as well as generalizations to different types of tensor and neural networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据