4.8 Article

Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice

期刊

SCIENCE
卷 371, 期 6530, 页码 735-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abf6840

关键词

-

资金

  1. NIH [P01-AI138938-S1]
  2. Caltech Merkin Institute for Translational Research
  3. George Mason University Fast Grant
  4. Medical Research Council [MR/P001351/1]
  5. European Union
  6. MRC [MR/P001351/1] Funding Source: UKRI

向作者/读者索取更多资源

The study developed nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 and other animal coronaviruses, which induced cross-reactive antibody responses in mice. Immunization with mosaic RBD nanoparticles resulted in superior neutralization of heterologous viruses, providing a potential strategy for simultaneous protection against multiple coronaviruses.
Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles with four to eight distinct RBDs). Mice immunized with RBD nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic RBD nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs relative to sera from immunizations with homotypic SARS-CoV-2-RBD nanoparticles or COVID-19 convalescent human plasmas. Moreover, after priming, sera from mosaic RBD-immunized mice neutralized heterologous pseudotyped coronaviruses as well as or better than sera from homotypic SARS-CoV-2-RBD nanoparticle immunizations, demonstrating no loss of immunogenicity against particular RBDs resulting from co-display. A single immunization with mosaic RBD nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据