4.5 Article

Dispersed Variable-Retention Harvesting Mitigates N Losses on Harvested Sites in Conjunction With Changes in Soil Microbial Community Structure

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/ffgc.2020.609216

关键词

variable-retention harvesting; microbial community structure; nitrogen; Mn; soil respiration; PLFA

资金

  1. NSERC
  2. NSERC CGSD Award
  3. Swedish Research Council [6212007-3740]
  4. FORMAS grant [2012-1541]

向作者/读者索取更多资源

Variable-retention harvesting is now a standard forest management practice that helps maintain mature forest species and structural diversity. The nutrient availability was surprisingly similar between dispersed retention and aggregated retention patch, while the microbial community structure varied between clear-cut and dispersed-retention treatments.
As an alternative to clear-cutting, variable-retention harvesting is now standard forest management practice on the coast of British Columbia and in temperate forests globally, due to the benefits associated with maintaining mature forest species and forest structural diversity. Although there is some evidence that variable-retention harvesting, particularly single-tree (dispersed) retention will mitigate the impacts of clear-cutting on soil microbial communities and nutrient cycling, findings have been inconsistent. We examined microbial community structure (phospholipid-fatty acid), and nutrient availability (PRSTM probes) in a large (aggregated) retention patch and over three harvesting treatments: dispersed retention, clear-cut and clear-cut edge 2 years after harvest. Unlike previous studies, we did not observe elevated nitrate in the harvested areas, instead ammonium was elevated. Availability of N and other nutrients were surprisingly similar between the dispersed-retention treatment and the retention patch. The microbial community, however, was different in the clear-cut and dispersed-retention treatments, mostly due to significantly lower abundance of fungi combined with an increase in bacteria, specifically Gram-negative bacteria. This was accompanied by lower delta C-13(PDB) value of the Gram-negative PLFA's in these treatments, suggesting the decline in mycorrhizal fungal abundance may have allowed the dominant Gram-negative bacteria to access more of the recently photosynthesized C. This shift in the microbial community composition in the dispersed-retention treatment did not appear to have a major impact on microbial functioning and nutrient availability, indicating that this harvesting practice is more effective at maintaining generic microbial functions/processes. However, as Mn levels were twice as high in the retention patch compared to the harvested treatments, indicating the other narrow processes (i.e., those performed by a small number of specialized microorganisms), such as lignin degradation, catalyzed by Mn peroxidase, which concomitantly removes Mn from solution, may be more sensitive to harvesting regimes. The effect of harvesting on such narrow nutrient cycling processes requires further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据