4.8 Review

Emerging perovskite quantum dot solar cells: feasible approaches to boost performance

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 14, 期 1, 页码 224-261

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee02900a

关键词

-

资金

  1. National Natural Science Foundation of China [51872014]
  2. Recruitment Program of Global Experts
  3. Fundamental Research Funds for the Central Universities
  4. 111 project [B17002]
  5. Swedish Energy Agency

向作者/读者索取更多资源

Lead halide perovskite quantum dots (PQDs) have shown great promise in the field of solar cells, with significant advancements in power conversion efficiency of PQD solar cells (PQDSCs) achieved through controlling surface chemistry and device physics. Various strategies, including synthesis methods and compositional engineering, have been discussed to improve device performance, highlighting the importance of device architecture in photovoltaic performance. Additionally, the review addresses device stability and outlines potential challenges and opportunities for further development of PQDSCs.
Lead halide perovskite quantum dots (PQDs), also called perovskite nanocrystals, are considered as one of the most promising classes of photovoltaic materials for solar cells due to their prominent optoelectronic properties and simple preparation techniques. Remarkable achievements in PQD solar cells (PQDSCs) have been made. In particular, the power conversion efficiency of PQDSCs has been largely pushed from 10.77% to 17.39% (certified 16.6%) by finely controlling the surface chemistry of PQDs and the device physics of PQDSCs. In this review, we summarize the latest advances of emerging PQDSCs and discuss various strategies applied to improve the device performance of PQDSCs, including the synthesis methods, compositional engineering and surface chemistry of PQDs. Moreover, the device operation of PQDSCs is discussed to highlight the effect of device architecture on the photovoltaic performance of PQDSCs. Facing the practical applications of the PQDSCs under ambient conditions, device stability is also highlighted. Finally, conclusions and perspectives are presented along with the possible challenges and opportunities to promote development steps of PQDSCs with higher photovoltaic performance and robust stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据