4.5 Article

Algebraic bounds on the Rayleigh-Benard attractor

期刊

NONLINEARITY
卷 34, 期 1, 页码 509-531

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6544/abb1c6

关键词

Rayleigh-Benard convection; global attractor; synchronization

资金

  1. National Science Foundation [DMS-1418911]
  2. NSF [DMS-1818754]
  3. Einstein Visiting Fellow Program
  4. John Simon Guggenheim Memorial Foundation
  5. Simons Foundation [586788]

向作者/读者索取更多资源

The Rayleigh-Benard system with stress-free boundary conditions is shown to have a global attractor in each affine space where velocity has fixed spatial average. The physical problem is proven to be equivalent to one with periodic boundary conditions and certain symmetries. A Gronwall estimate on enstrophy leads to bounds on the L-2 norm of the temperature gradient on the global attractor. By finding a bounding region for the attractor in the enstrophy-palinstrophy plane, all final bounds are algebraic in the viscosity and thermal diffusivity, which is a significant improvement over previously established estimates.
The Rayleigh-Benard system with stress-free boundary conditions is shown to have a global attractor in each affine space where velocity has fixed spatial average. The physical problem is shown to be equivalent to one with periodic boundary conditions and certain symmetries. This enables a Gronwall estimate on enstrophy. That estimate is then used to bound the L-2 norm of the temperature gradient on the global attractor, which, in turn, is used to find a bounding region for the attractor in the enstrophy-palinstrophy plane. All final bounds are algebraic in the viscosity and thermal diffusivity, a significant improvement over previously established estimates. The sharpness of the bounds are tested with numerical simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据