4.8 Article

Amplitude nanofriction spectroscopy

期刊

NANOSCALE
卷 13, 期 3, 页码 1955-1960

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr07925a

关键词

-

资金

  1. Italian Ministry of University and Research through PRIN UTFROM [20178PZCB5]
  2. European Union's H2020 Framework Programme/ERC Advanced Grant [8344023]
  3. European Union's H2020 Framework Programme/ERC Starting Grant [637748]
  4. European Research Council (ERC) [637748] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

In this study, an experimental and simulation approach was used to investigate the successive live phases of atomic scale friction by applying an oscillatory shear force with increasing amplitude. The demonstration with controlled gold nanocontacts sliding on graphite revealed phenomena bridging the gap between initial depinning and large speed sliding.
Atomic scale friction, an indispensable element of nanotechnology, requires a direct access to, under actual growing shear stress, its successive live phases: from static pinning, to depinning and transient evolution, eventually ushering in steady state kinetic friction. Standard tip-based atomic force microscopy generally addresses the steady state, but the prior intermediate steps are much less explored. Here we present an experimental and simulation approach, where an oscillatory shear force of increasing amplitude leads to a one-shot investigation of all these successive aspects. Demonstration with controlled gold nanocontacts sliding on graphite uncovers phenomena that bridge the gap between initial depinning and large speed sliding, of potential relevance for atomic scale time and magnitude dependent rheology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据