4.4 Article

Potent antibacterial action of phycosynthesized selenium nanoparticles using Spirulina platensis extract

期刊

GREEN PROCESSING AND SYNTHESIS
卷 10, 期 1, 页码 49-60

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/gps-2021-0005

关键词

antimicrobial; green synthesis; microalgae extract; Spirulina platensis; selenium nanoparticles

向作者/读者索取更多资源

This study successfully synthesized selenium nanoparticles using cell-free extract of Spirulina platensis and characterized them using various techniques. The nanoparticles showed effective antibacterial properties, with smaller particles exhibiting stronger antibacterial effects and causing severe damage to bacterial cells.
Selenium nanoparticles (SeNPs) are reinforced safe forms of the essential micronutrient selenium (Se) which take a lead in countless biotechnological and biomedical applications. The phycosynthesis of SeNPs was successfully investigated using cell-free extract of the microalgae, Spirulina platensis. The phycosynthesized S. platensis-SeNPs (SpSeNPs) were characterized using several characterization techniques such as UV-Visible, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and energy dispersive X-ray. They were effectually achieved using different concentration from sodium selenite (Na2SeO3) (1, 5, and 10 mM) to give size means of 12.64, 8.61, and 5.93 nm, respectively, with spherical shapes and highly negative zeta potentialities. The infrared analyses revealed the involvement of many phycochemials in SpSeNPs production. The antibacterial properties of SpSeNPs were confirmed, qualitatively and quantitatively, against foodborne microorganisms (Staphylococcus aureus and Salmonella typhimurium); the antibacterial activity was correlated and increased with SeNPs' size diminution. The scanning micrographs of S. typhimurium cells treated with SpSeNPs indicated the severe action of nanoparticles to destroy bacterial cells in time-dependent manners. The innovative facile phycosynthesis of SeNPs using S. platensis is recommended to generate effectual bioactive agents to control hazardous bacterial species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据