4.7 Article

Autonomous Brownian gyrators: A study on gyrating characteristics

期刊

PHYSICAL REVIEW E
卷 103, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.022128

关键词

-

资金

  1. Ministry of Science and Technology in Taiwan [MOST 107-2112-M-008-014]
  2. NCTS thematic group Complex Systems

向作者/读者索取更多资源

We investigated the nonequilibrium steady-state dynamics of two-dimensional Brownian gyrators under different potentials, revealing distinct gyrating patterns between nonharmonic potentials and corresponding probability distributions.
We study the nonequilibrium steady-state (NESS) dynamics of two-dimensional Brownian gyrators under harmonic and nonharmonic potentials via computer simulations and analyses based on the Fokker-Planck equation, while our nonharmonic cases feature a double-well potential and an isotropic quartic potential. In particular, we report two simple methods that can help understand gyrating patterns. For harmonic potentials, we use the Fokker-Planck equation to survey the NESS dynamical characteristics; i.e., the NESS currents gyrate along the equiprobability contours and the stationary point of flow coincides with the potential minimum. As a contrast, the NESS results in our nonharmonic potentials show that these properties are largely absent, as the gyrating patterns are very distinct from those of corresponding probability distributions. Furthermore, we observe a critical case of the double-well potential, where the harmonic contribution to the gyrating pattern becomes absent, and the NESS currents do not circulate about the equiprobability contours near the potential minima even at low temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据