4.6 Review

Advanced research trends in dye-sensitized solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 17, 页码 10527-10545

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta00690h

关键词

-

资金

  1. UniOGS
  2. Jane and Aatos Erkko Foundation
  3. Technology Industries of Finland [2430354811]
  4. Academy of Finland 6Genesis Flagship [318927]
  5. European Union [726360]

向作者/读者索取更多资源

This paper reviews the recent progress in DSSC research to achieve high photovoltaic efficiency and performance stability under typical indoor conditions by developing new device structures, alternative redox shuttles, solid-state hole conductors, TiO2 photoelectrodes, catalyst materials, and sealing techniques. It proposes a scalable cell fabrication process that integrates these developments to a new monolithic cell design based on several features. Finally, the need to design new stability testing protocols to assess the probable deployment of DSSCs in portable electronics and internet-of-things devices is discussed.
Dye-sensitized solar cells (DSSCs) are an efficient photovoltaic technology for powering electronic applications such as wireless sensors with indoor light. Their low cost and abundant materials, as well as their capability to be manufactured as thin and light-weight flexible solar modules highlight their potential for economic indoor photovoltaics. However, their fabrication methods must be scaled to industrial manufacturing with high photovoltaic efficiency and performance stability under typical indoor conditions. This paper reviews the recent progress in DSSC research towards this goal through the development of new device structures, alternative redox shuttles, solid-state hole conductors, TiO2 photoelectrodes, catalyst materials, and sealing techniques. We discuss how each functional component of a DSSC has been improved with these new materials and fabrication techniques. In addition, we propose a scalable cell fabrication process that integrates these developments to a new monolithic cell design based on several features including inkjet and screen printing of the dye, a solid state hole conductor, PEDOT contact, compact TiO2, mesoporous TiO2, carbon nanotubes counter electrode, epoxy encapsulation layers and silver conductors. Finally, we discuss the need to design new stability testing protocols to assess the probable deployment of DSSCs in portable electronics and internet-of-things devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据