4.5 Review

The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model data comparisons

期刊

CLIMATE OF THE PAST
卷 17, 期 1, 页码 269-315

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-17-269-2021

关键词

-

资金

  1. Bolin Centre for Climate Research (Research Area 6)
  2. Vetenskapsradet [2016-03912]
  3. Svenska Forskningsradet Formas [2018-01621]
  4. Danish Council for Independent Research - Natural Sciences (DFF/FNU) [11-107497]
  5. Formas [2018-01621] Funding Source: Formas
  6. Swedish Research Council [2016-03912] Funding Source: Swedish Research Council

向作者/读者索取更多资源

The Eocene-Oligocene transition marked a shift from a largely ice-free greenhouse world to an icehouse climate, primarily driven by a decrease in atmospheric CO2 and changes to ocean gateways, with possible influence from orbital forcing. Model ensemble results suggest that a significant decrease in CO2 was the main driver of global glaciation growth.
The Eocene-Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring similar to 34 million years ago (Ma) and lasting similar to 790 kyr. The change is marked by a global shift in deep-sea delta O-18 representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climateadapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (similar to 325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data-model comparison should be considered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not include dynamic ice sheets and in some cases may be undersensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据