4.7 Article

Behavior of information flow near criticality

期刊

PHYSICAL REVIEW E
卷 103, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.L010102

关键词

-

资金

  1. KAKENHI Grant [JP16K17780]
  2. JST Presto, Japan [JP18070368]

向作者/读者索取更多资源

Recent experiments suggest that biological systems self-organize near their critical point, with information transmission efficiency depending on the dynamics of the input signal, its correlation time, and the distance to the critical point. Instantaneous mutual information varies nonmonotonically with temperature, but increases monotonically with input signal correlation time. There exists an optimal temperature and optimal input correlation time that maximize information transmission rate, due to the trade-off between message frequency, response speed, and reliability.
Recent experiments have indicated that many biological systems self-organize near their critical point, which hints at a common design principle. While it has been suggested that information transmission is optimized near the critical point, it remains unclear how information transmission depends on the dynamics of the input signal, the distance over which the information needs to be transmitted, and the distance to the critical point. Here we employ stochastic simulations of a driven two-dimensional Ising system and study the instantaneous mutual information and the information transmission rate between a driven input spin and an output spin. The instantaneous mutual information varies nonmonotonically with the temperature but increases monotonically with the correlation time of the input signal. In contrast, there exists not only an optimal temperature but also an optimal finite input correlation time that maximizes the information transmission rate. This global optimum arises from a fundamental trade-off between the need to maximize the frequency of independent input messages, the necessity to respond fast to changes in the input, and the need to respond reliably to these changes. The optimal temperature lies above the critical point but moves toward it as the distance between the input and output spin is increased.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据