4.6 Article

A Finite-Time Fault-Tolerant Control Using Non-Singular Fast Terminal Sliding Mode Control and Third-Order Sliding Mode Observer for Robotic Manipulators

期刊

IEEE ACCESS
卷 9, 期 -, 页码 31225-31235

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2021.3059897

关键词

Uncertainty; Robots; Observers; Convergence; Service robots; Mathematical model; Switches; Fault-tolerant control; controller-observer strategy; third-order sliding mode observer; non-singular fast terminal sliding mode control; robotic manipulators

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2019R1D1A3A03103528]
  2. National Research Foundation of Korea [2019R1D1A3A03103528] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This paper proposes a fault-tolerant control method for robotic manipulators to deal with lumped uncertainties and faults in the absence of tachometer sensors. The third-order sliding mode observer is used to estimate system velocities and uncertainties, leading to improved control performance, reduced chattering phenomenon, and fast finite-time convergence. The stability and convergence of the proposed controller-observer technique are demonstrated using Lyapunov theory.
In this paper, a fault-tolerant control (FTC) method for robotic manipulators is proposed to deal with the lumped uncertainties and faults in case of lacking tachometer sensors in the system. First, the third-order sliding mode (TOSM) observer is performed to approximate system velocities and the lumped uncertainties and faults. This observer provides estimation information with high precision, low chattering phenomenon, and finite-time convergence. Then, an FTC method is proposed based on a non-singular fast terminal switching function and the TOSM observer. This combination provides robust features in dealing with the lumped uncertainties and faults, increases the control performance, reduces chattering phenomenon, and guarantees fast finite-time convergence. Especially, this paper considers both two periods of time, in which before and after the convergence process takes place. The stability and the finite-time convergence of the proposed controller-observer technique is demonstrated using the Lyapunov theory. Finally, to verify the effectiveness of the proposed controller-observer technique, computer simulation on a serial two-link robotic manipulator is performed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据